3.209 \(\int \frac{(A+B x) (b x+c x^2)^{3/2}}{x^{7/2}} \, dx\)

Optimal. Leaf size=128 \[ \frac{\left (b x+c x^2\right )^{3/2} (3 A c+2 b B)}{3 b x^{3/2}}+\frac{\sqrt{b x+c x^2} (3 A c+2 b B)}{\sqrt{x}}-\sqrt{b} (3 A c+2 b B) \tanh ^{-1}\left (\frac{\sqrt{b x+c x^2}}{\sqrt{b} \sqrt{x}}\right )-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}} \]

[Out]

((2*b*B + 3*A*c)*Sqrt[b*x + c*x^2])/Sqrt[x] + ((2*b*B + 3*A*c)*(b*x + c*x^2)^(3/2))/(3*b*x^(3/2)) - (A*(b*x +
c*x^2)^(5/2))/(b*x^(7/2)) - Sqrt[b]*(2*b*B + 3*A*c)*ArcTanh[Sqrt[b*x + c*x^2]/(Sqrt[b]*Sqrt[x])]

________________________________________________________________________________________

Rubi [A]  time = 0.125791, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {792, 664, 660, 207} \[ \frac{\left (b x+c x^2\right )^{3/2} (3 A c+2 b B)}{3 b x^{3/2}}+\frac{\sqrt{b x+c x^2} (3 A c+2 b B)}{\sqrt{x}}-\sqrt{b} (3 A c+2 b B) \tanh ^{-1}\left (\frac{\sqrt{b x+c x^2}}{\sqrt{b} \sqrt{x}}\right )-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*(b*x + c*x^2)^(3/2))/x^(7/2),x]

[Out]

((2*b*B + 3*A*c)*Sqrt[b*x + c*x^2])/Sqrt[x] + ((2*b*B + 3*A*c)*(b*x + c*x^2)^(3/2))/(3*b*x^(3/2)) - (A*(b*x +
c*x^2)^(5/2))/(b*x^(7/2)) - Sqrt[b]*(2*b*B + 3*A*c)*ArcTanh[Sqrt[b*x + c*x^2]/(Sqrt[b]*Sqrt[x])]

Rule 792

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d*g - e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/((2*c*d - b*e)*(m + p + 1)), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{7/2}} \, dx &=-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}}+\frac{\left (-\frac{7}{2} (-b B+A c)+\frac{5}{2} (-b B+2 A c)\right ) \int \frac{\left (b x+c x^2\right )^{3/2}}{x^{5/2}} \, dx}{b}\\ &=\frac{(2 b B+3 A c) \left (b x+c x^2\right )^{3/2}}{3 b x^{3/2}}-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}}+\frac{1}{2} (2 b B+3 A c) \int \frac{\sqrt{b x+c x^2}}{x^{3/2}} \, dx\\ &=\frac{(2 b B+3 A c) \sqrt{b x+c x^2}}{\sqrt{x}}+\frac{(2 b B+3 A c) \left (b x+c x^2\right )^{3/2}}{3 b x^{3/2}}-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}}+\frac{1}{2} (b (2 b B+3 A c)) \int \frac{1}{\sqrt{x} \sqrt{b x+c x^2}} \, dx\\ &=\frac{(2 b B+3 A c) \sqrt{b x+c x^2}}{\sqrt{x}}+\frac{(2 b B+3 A c) \left (b x+c x^2\right )^{3/2}}{3 b x^{3/2}}-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}}+(b (2 b B+3 A c)) \operatorname{Subst}\left (\int \frac{1}{-b+x^2} \, dx,x,\frac{\sqrt{b x+c x^2}}{\sqrt{x}}\right )\\ &=\frac{(2 b B+3 A c) \sqrt{b x+c x^2}}{\sqrt{x}}+\frac{(2 b B+3 A c) \left (b x+c x^2\right )^{3/2}}{3 b x^{3/2}}-\frac{A \left (b x+c x^2\right )^{5/2}}{b x^{7/2}}-\sqrt{b} (2 b B+3 A c) \tanh ^{-1}\left (\frac{\sqrt{b x+c x^2}}{\sqrt{b} \sqrt{x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0601579, size = 94, normalized size = 0.73 \[ \frac{\sqrt{x (b+c x)} \left (\sqrt{b+c x} (2 B x (4 b+c x)-3 A (b-2 c x))-3 \sqrt{b} x (3 A c+2 b B) \tanh ^{-1}\left (\frac{\sqrt{b+c x}}{\sqrt{b}}\right )\right )}{3 x^{3/2} \sqrt{b+c x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*(b*x + c*x^2)^(3/2))/x^(7/2),x]

[Out]

(Sqrt[x*(b + c*x)]*(Sqrt[b + c*x]*(-3*A*(b - 2*c*x) + 2*B*x*(4*b + c*x)) - 3*Sqrt[b]*(2*b*B + 3*A*c)*x*ArcTanh
[Sqrt[b + c*x]/Sqrt[b]]))/(3*x^(3/2)*Sqrt[b + c*x])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 122, normalized size = 1. \begin{align*} -{\frac{1}{3}\sqrt{x \left ( cx+b \right ) } \left ( -2\,B{x}^{2}c\sqrt{b}\sqrt{cx+b}+9\,A{\it Artanh} \left ({\frac{\sqrt{cx+b}}{\sqrt{b}}} \right ) xbc-6\,Axc\sqrt{cx+b}\sqrt{b}+6\,B{\it Artanh} \left ({\frac{\sqrt{cx+b}}{\sqrt{b}}} \right ) x{b}^{2}-8\,Bx{b}^{3/2}\sqrt{cx+b}+3\,A{b}^{3/2}\sqrt{cx+b} \right ){x}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{cx+b}}}{\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(c*x^2+b*x)^(3/2)/x^(7/2),x)

[Out]

-1/3*(x*(c*x+b))^(1/2)*(-2*B*x^2*c*b^(1/2)*(c*x+b)^(1/2)+9*A*arctanh((c*x+b)^(1/2)/b^(1/2))*x*b*c-6*A*x*c*(c*x
+b)^(1/2)*b^(1/2)+6*B*arctanh((c*x+b)^(1/2)/b^(1/2))*x*b^2-8*B*x*b^(3/2)*(c*x+b)^(1/2)+3*A*b^(3/2)*(c*x+b)^(1/
2))/x^(3/2)/(c*x+b)^(1/2)/b^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{2}{3} \,{\left (B c x + B b\right )} \sqrt{c x + b} + \int \frac{{\left (A b +{\left (B b + A c\right )} x\right )} \sqrt{c x + b}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x)^(3/2)/x^(7/2),x, algorithm="maxima")

[Out]

2/3*(B*c*x + B*b)*sqrt(c*x + b) + integrate((A*b + (B*b + A*c)*x)*sqrt(c*x + b)/x^2, x)

________________________________________________________________________________________

Fricas [A]  time = 1.60796, size = 454, normalized size = 3.55 \begin{align*} \left [\frac{3 \,{\left (2 \, B b + 3 \, A c\right )} \sqrt{b} x^{2} \log \left (-\frac{c x^{2} + 2 \, b x - 2 \, \sqrt{c x^{2} + b x} \sqrt{b} \sqrt{x}}{x^{2}}\right ) + 2 \,{\left (2 \, B c x^{2} - 3 \, A b + 2 \,{\left (4 \, B b + 3 \, A c\right )} x\right )} \sqrt{c x^{2} + b x} \sqrt{x}}{6 \, x^{2}}, \frac{3 \,{\left (2 \, B b + 3 \, A c\right )} \sqrt{-b} x^{2} \arctan \left (\frac{\sqrt{-b} \sqrt{x}}{\sqrt{c x^{2} + b x}}\right ) +{\left (2 \, B c x^{2} - 3 \, A b + 2 \,{\left (4 \, B b + 3 \, A c\right )} x\right )} \sqrt{c x^{2} + b x} \sqrt{x}}{3 \, x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x)^(3/2)/x^(7/2),x, algorithm="fricas")

[Out]

[1/6*(3*(2*B*b + 3*A*c)*sqrt(b)*x^2*log(-(c*x^2 + 2*b*x - 2*sqrt(c*x^2 + b*x)*sqrt(b)*sqrt(x))/x^2) + 2*(2*B*c
*x^2 - 3*A*b + 2*(4*B*b + 3*A*c)*x)*sqrt(c*x^2 + b*x)*sqrt(x))/x^2, 1/3*(3*(2*B*b + 3*A*c)*sqrt(-b)*x^2*arctan
(sqrt(-b)*sqrt(x)/sqrt(c*x^2 + b*x)) + (2*B*c*x^2 - 3*A*b + 2*(4*B*b + 3*A*c)*x)*sqrt(c*x^2 + b*x)*sqrt(x))/x^
2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x \left (b + c x\right )\right )^{\frac{3}{2}} \left (A + B x\right )}{x^{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x**2+b*x)**(3/2)/x**(7/2),x)

[Out]

Integral((x*(b + c*x))**(3/2)*(A + B*x)/x**(7/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.30861, size = 126, normalized size = 0.98 \begin{align*} \frac{2 \,{\left (c x + b\right )}^{\frac{3}{2}} B c + 6 \, \sqrt{c x + b} B b c + 6 \, \sqrt{c x + b} A c^{2} - \frac{3 \, \sqrt{c x + b} A b c}{x} + \frac{3 \,{\left (2 \, B b^{2} c + 3 \, A b c^{2}\right )} \arctan \left (\frac{\sqrt{c x + b}}{\sqrt{-b}}\right )}{\sqrt{-b}}}{3 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x)^(3/2)/x^(7/2),x, algorithm="giac")

[Out]

1/3*(2*(c*x + b)^(3/2)*B*c + 6*sqrt(c*x + b)*B*b*c + 6*sqrt(c*x + b)*A*c^2 - 3*sqrt(c*x + b)*A*b*c/x + 3*(2*B*
b^2*c + 3*A*b*c^2)*arctan(sqrt(c*x + b)/sqrt(-b))/sqrt(-b))/c